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1. Introduction

In recent years, deep neural networks have seen great interest and adoption in a variety of fields.

With this upsurge in adoption, the amount of compute has increased exponentially. There is an

increase in energy costs and carbon footprint associated with the training and inference of deep

learning models. Various embedded and mobile systems running deep learning-based AI

applications like computer vision, voice assistants, etc. have limited battery capacities.

Processors running models with high energy consumption deplete batteries at a higher rate,

making the application unfit for use. While contemporary research has focused majorly on

accuracy optimizations, there is a need for energy optimization of models and benchmarking of

hardware used for deep learning. With this need in mind, the project is aimed at benchmarking

the energy consumption of deep learning models on different processors. For the purpose of

benchmarking, convolutional neural networks shall be considered. The objective is to design and

implement an energy estimation methodology at the processor level for the forward pass

computations of a convolutional neural network. Through this, a metric will be created to

estimate the per pixel energy consumption of convolutional neural networks on different

processors, using which benchmarks for the energy consumption of the processor during

inference can be created.

In order to obtain benchmarking metrics, it is necessary to measure CPU-level energy

consumption, floating point operations (FLOPS) and memory consumption of the process

running the deep neural network program. Intel SoCWatch is a tool that provides CPU-level

energy metrics while running a given compiled object file. In the project, a wrapper library

written in Python- “DeepMeter”, was built on top of Intel SoCWatch. DeepMeter invokes

SoCWatch implicitly after building a neural network program from the given user input.

DeepMeter offers a layerwise breakdown of energy consumption of a particular neural network,

the data for which is provided in a JavaScript Object Notation (JSON) file.

Keywords: energy measurement, deep neural networks, benchmarking
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2. Scope and Objectives

Current optimizations for neural networks focus on saving the number of computations during

training and inference at the cost of accuracy. Increasingly, neural networks are finding

applications in artificial intelligent systems running on mobile and IoT devices. Inference from

trained models has popularly been done through cloud computing. However, with an increased

demand for edge computing, new requirements come into the picture-

1. Network access- When implementation of a system using DNNs is dependent on

processing taking place in the cloud, the application is restricted to the areas with good

internet connectivity. To uncouple the application from the internet, the trained model

needs to be placed at the edge device capable of processing inference computations.

2. Privacy- Certain applications like those in healthcare require the data of the end user to

be restricted to the local device, without transmission to any external server or database.

3. Latency- Real-time applications like voice assistants, self-driving cars require making

rapid decisions based on the incoming data. This makes low latency a must. Decoupling

the application from the cloud and carrying out the inference computations on the device

itself is required.

Edge devices like mobile devices and IoT devices are constrained by their small battery sizes.

Thus, for implementation of DNNs on these devices, energy consumption becomes an important

factor to consider.

It is observed that the energy consumed in accessing the data from the memory is many orders of

magnitude larger than that consumed in the computations taking place in the processor. Thus,

energy consumption is dependent on the way the different processors implement their memory

architectures i.e. the RAM, levels of caches, buffers. Due to this, the process for developing

energy-efficient models has to take into consideration the memory architecture, and differs from

methods used to optimize the number of computations. When developing processors,

accelerators and application specific integrated circuits (ASICs) with energy efficiency in mind,

benchmarks are required to make comparisons to existing hardware architectures. Thus,

benchmarking of different existing hardware architectures is required.
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With the variety of hardware architectures available in the market, which includes differing CPU

and GPU architectures that have different performances, the choice of hardware required for the

specific purpose of the application makes a significant impact on its efficient working.

Simultaneously, data from energy analyses can be used to optimize the neural network

architecture in implementation. This applies especially for cross-platform applications and

applications where the choice of hardware architectures is limited by availability and cost. It can

be predicted by FLOPS and memory consumption measurement and also empirically observed

after energy measurement that certain types of layers in the neural network architecture consume

differing levels of energy. With variation of energy consumption under consideration, various

techniques can be applied for its reduction in specific layers. These techniques often have an

accuracy tradeoff, which leads to different optimization strategies that are suited to the particular

application in question. If the feasibility of the application is reliant on the energy efficiency of

the neural network architecture it uses, the accuracy tradeoff can be accepted to a sufficient

extent while reducing its energy consumption.

The objective of the project is to develop a energy measurement framework that allows for the

benchmarking of hardware architectures for running different neural networks. It aims to

establish a reliable unit of measurement for the energy consumption of deep neural networks.

The project shall primarily focus on convolutional neural networks (CNNs) and hence aim to

establish per pixel energy consumption as a unit of measurement. The project also aims to create

a energy measurement library tailored to deep neural networks, which can be used during

benchmarking and optimization.
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3. Literature Survey

3.1 Relationship between energy, computations and memory accesses

Research regarding the energy consumption of deep neural networks is fairly nascent. Study has

been spurred by the requirement of deep learning applications to be energy efficient. One such

study is that done by Dr. Vivienne Sze at Massachusetts Institute of Technology. Sze’s group at

MIT (Yang et al. 2017) has come up with an energy-estimation methodology that is based on

their Eyeriss spatial architecture (Chen et al. 2016). The total energy consumption can be divided

into two parts- energy consumed in the CPU during computations ( ) and energy consumed𝐸
𝑐𝑜𝑚𝑝

in accessing the data from the memory ( ).𝐸
𝑑𝑎𝑡𝑎

Figure 1: Division of energy consumption in a process

Majority of the computations in CNNs are multiply-and-accumulate operations (MACs). Thus,

the amount of energy consumed in performing one MAC operation scaled by the total number of

MAC operations will yield .𝐸
𝑐𝑜𝑚𝑝

For estimating , the number of bits accessed at each level in the memory hierarchy is𝐸
𝑑𝑎𝑡𝑎

measured, it is multiplied with the energy required to access a single bit at that memory level and

a sum is taken over all the memory levels.
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(1)𝐸
𝑑𝑎𝑡𝑎 

=  
𝑖 = 1

𝑁

∑ 𝐸
𝑖 

× (𝑛
𝑏𝑖𝑡𝑠

)
𝑖

The memory hierarchy consisting of Random Access Memory (RAM), buffers, multiple levels of

instruction and data caches is organized such that the memory levels closer to the CPU consume

less energy. However, lower levels of memory like caches have smaller capacities. With this

tradeoff in place, there are different strategies to optimize energy consumption and space in the

respective memory levels. In each of these strategies, the data present in the various memory

levels differs. Depending on the strategy being used, energy for the different levels of memory

can be calculated and finally accumulated.

3.2 Eyeriss Architecture

With the aim of accurately estimating the energy consumption, Sze’s group developed “Eyeriss”,

an accelerator for deep neural networks that exploits data reuse by parallelizing MAC operations.

The memory architecture in Eyeriss comprises of various memory levels of differing energy

levels of access. The convolution operations in the CNN are off-loaded to the accelerator, which

contains a buffer and a processing element (PE) array.

Figure 2: Eyeriss Architecture

Each processing element has its own register file and an ALU, which handles MAC operations in

this case. The PEs are connected such that they can inter-communicate the information they
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process. This is useful in accumulation operations. In the Eyeriss architecture, there are four

types of memory accesses where energy is consumed- Dynamic Random-Access Memory

(DRAM), Global buffer, inter-PE communication, Register File (RF). For each of these memory

accesses, the energy consumption is measured on-chip and the values are normalized with the

energy consumed in one MAC operation.

Table 1: Normalised energy consumption of memory accesses in Eyeriss

Memory hierarchy Normalized energy consumption Number of reuses of
one data value

DRAM 200x a

Global buffer 6x b

Arrays (Inter-PE) 2x c

RF 1x d

The values , , , are assigned to the number of times a single data value is accessed in the𝑎 𝑏 𝑐 𝑑

respective memory level.

These values differ based on the data reuse strategy being used. With these values in

consideration, the total energy consumed is calculated.

𝐸𝐶
𝑡𝑜𝑡𝑎𝑙 

=  𝑎 × 𝐸𝐶
𝐷𝑅𝐴𝑀

+  𝑎𝑏 × 𝐸𝐶
𝐵𝑢𝑓𝑓𝑒𝑟

+ 𝑎𝑏𝑐 × 𝐸𝐶
𝑎𝑟𝑟𝑎𝑦

 +  𝑎𝑏𝑐𝑑 × 𝐸𝐶
𝑅𝐹

A web based tool that uses this methodology for energy estimation has been made available.1

1 https://energyestimation.mit.edu/
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Figure 3: Layer-wise energy consumption in AlexNet

Figure 3 shows a sample result from the tool. Here, layer-wise breakup of the energy

consumption in AlexNet calculated using the aforementioned energy estimation methodology is

represented graphically, which is further categorised into the energy consumed in the processing

of the input feature maps, output feature maps, weights and the computation. Evidently, the

energy consumed in computations is less than the energy consumed in accessing the memory.

The Eyeriss project offers insight into the relationship between energy consumption and the

memory accesses. It rejects the intuitive notion that energy consumption should scale linearly

with the number of FLOPS and emphasizes the role of memory consumption in energy

consumption. Since processing of different neural network layers involves different amounts of

memory accesses at runtime, this observation helps us explain the variation in the energy

consumed by different layers in the upcoming experiments. This needs to be considered during

benchmarking a particular neural network on a given hardware architecture. The Eyeriss project

illustrates a layerwise approach to energy measurement, which is well-suited for different

optimization techniques. The current project also draws inspiration from the easily accessible
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web-based energy estimation tool that has been published for free public use. The aim of the

current project is to develop a generalised tool that can be used across hardware architectures.

The energy in this case needs to be measured and not estimated, since the memory accesses and

energy levels at different memory layers in the memory architecture is not known beforehand.

Thus, a hardware-level energy measurement tool is required to accomplish the purpose.
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4. Energy Measurement Methodology

In order to develop a benchmarking framework, a methodology needs to be established for the

measurement of energy consumption in relation to deep neural networks. Specifically, each layer

needs to be taken into consideration separately while performing energy measurement.

4.1 Intel SoCWatch

Energy consumption is measured using the Intel SoCWatch tool. SoCWatch is a part of the

oneAPI toolkit developed by Intel, which is available as a part of Intel’s VTune platform. It is

used for energy monitoring and analysis on the system. Intel SoCWatch is accessed from the

command line, with the executable file that needs to be monitored as an argument.  For the

purpose of this project, the power feature of the tool shall be used, which is accessed via the “-f

power” command line parameter. This function returns the power and energy consumption of the

CPU and DRAM packages present in the system. A sample output from SoCWatch is given in

Figure 4.
--------------------------------------------------------------------------

Intel(R) SoC Watch for Linux* OS Version 2021.1 [Apr 15 2021]

Build Ref: f8308ca4eef08f738340d9b2dfb7b79a9147b24c

Post Processed using SoC Watch for Linux* OS Version 2021.1 [Apr 15 2021]

Post Processed Build Ref: f8308ca4eef08f738340d9b2dfb7b79a9147b24c

Copyright (c) 2021 Intel Corporation. All Rights Reserved.

Platform power analysis tool for use with Intel processors/chipsets/platforms.

*Other names and brands may be claimed as the property of others.

--------------------------------------------------------------------------

Command line options: -f power -p ./controller/run.py

Program Started: 2022-03-08 10:13:18 GMT

Data Collection Started: 2022-03-08 10:13:18 GMT

Collection duration (sec):0.784405

System Name: miriad1a

Operating System: Linux [4.15.0-153-generic]

CPU: Skylake Server

CPU ID (family.model.stepping): 0x6.0x55.0x4
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Platform ID: 0b000

Integrated GPU Device: NA

PCH:  (0xa1c1)

EDRAM Present: No

Total # of packages: 2

Total # of cores: 48

Total # of logical processors: 96

=============

Package Power

=============

Note: Die-level power is included in package power on platforms with a multi-die CPU topology.

Package Power Summary: Average Rate and Total

Component    , Metric Type, Average Rate (mW), Total (mJ)

---------    , -----------, -----------------, ----------

CPU/Package_0, Power      , 30131.32         , 23626.10

CPU/Package_1, Power      , 33905.20         , 26585.45

Package Power Summary: Total Samples Received

Component    , Total # of samples, Min sampling interval (msec), Max sampling interval (msec), Avg sampling interval

(msec)

---------    , ------------------, ----------------------------, ----------------------------, ----------------------------

CPU/Package_0, 6                 , 2.28                        , 279.49                      , 156.16

CPU/Package_1, 4                 , 91.41                       , 368.50                      , 260.25

==========

DRAM Power

==========

DRAM Power Summary: Average Rate and Total

Component  , Metric Type, Average Rate (mW), Total (mJ)

---------  , -----------, -----------------, ----------

DRAM/DRAM_0, Power      , 8636.69          , 6772.16

DRAM/DRAM_1, Power      , 10831.17         , 8492.92

DRAM Power Summary: Total Samples Received

Component  , Total # of samples, Min sampling interval (msec), Max sampling interval (msec), Avg sampling interval

(msec)

---------  , ------------------, ----------------------------, ----------------------------, ----------------------------

DRAM/DRAM_0, 6                 , 2.22                        , 279.49                      , 156.15

DRAM/DRAM_1, 4                 , 91.41                       , 368.50                      , 260.25

Figure 4: Sample SoCWatch output
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4.2 Experimental Steps

An untrained Lenet-5 model is taken for the purpose of experimentation. The model is written

using the PyTorch framework in Python and is present in a single executable Python file.

import torch.nn as nn

class Lenet5(nn.Module):

def __init__(self):

super(Lenet5, self).__init__()

self.pool = nn.MaxPool2d(kernel_size = (2, 2), stride = (2, 2))

self.conv1 = nn.Conv2d(in_channels = 1, out_channels = 6, kernel_size = (5, 5), stride = (1, 1), padding = (0, 0))

self.relu1 = nn.ReLU()

self.pool1 = nn.MaxPool2d(kernel_size = (2, 2), stride = (2, 2))

self.conv2 = nn.Conv2d(in_channels = 6, out_channels = 16, kernel_size = (5, 5), stride = (1, 1), padding = (0, 0))

self.relu2 = nn.ReLU()

self.pool2 = nn.MaxPool2d(kernel_size = (2, 2), stride = (2, 2))

self.linear1 = nn.Linear(400, 120)

self.relu3 = nn.ReLU()

self.linear2 = nn.Linear(120, 84)

self.relu4 = nn.ReLU()

self.linear3 = nn.Linear(84, 10)

def _call_func(self, func, x):

return func(x)

def forward(self, x):

x = self.conv1(x)

x = self.relu1(x)

x = self.pool1(x)

x = self.conv2(x)

x = self.relu2(x)

x = self.pool2(x)

x = x.reshape(x.shape[0], -1)

x = self.linear1(x)

x = self.relu3(x)

x = self.linear2(x)

x = self.relu4(x)

x = self.linear3(x)

return x

Figure 5: Lenet5 model written in PyTorch
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To establish correlation between input image size i.e number of pixels and the amount of energy

consumed for inference, an experiment is conducted to measure the energy consumed for

different input image sizes for each layer in the Lenet5 model. For each iteration of the

experiment, an image from the MNIST dataset is taken, resized to the required dimensions and

passed through the layer taken in consideration. The Intel SoCWatch relies on sampling the CPU

for energy data.

As each layer undergoes optimization separately, the energy measurement framework should

ideally provide information in a staggered manner, with the separate energy consumption metrics

for each layer. Since FLOPS and memory consumption measurements are often utilized in

optimization methods, the framework must be extensible to include these parameters as well.

To ensure that the tool collects enough samples to produce an accurate result, the program needs

to have sufficient runtime. For this, inference for each layer is conducted for a batch of 10,000

images. To streamline data collection, the process of running SoCWatch and parsing its output is

automated using another Python script. This automation script reads the output data from the tool

and saves it as a comma-separated value (CSV) file. This data can be subsequently imported into

a spreadsheet for analysis.
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5. Experiments

In order to develop a methodology to measure energy consumption of deep neural networks, a

series of experiments was conducted. Through these experiments, Python code was developed to

adapt the SoCWatch tool to the purpose of measuring energy for each layer.

5.1 Preliminary measurements using SoCWatch

SoCWatch provides the various energy metrics that can be collected either individually or in

groups. For the purpose of this experiment, the power and energy metrics are collected.

Results
=============
Package Power
=============
Note: Die-level power is included in package power on platforms with a multi-die CPU topology.

Package Power Summary: Average Rate and Total
Component        , Metric Type, Average Rate (mW), Total (mJ)
---------                , -----------     , -----------------            , ----------
CPU/Package_0, Power        , 22027.14                  , 763.24
CPU/Package_1, Power        , 20392.05                  , 706.73

Package Power Summary: Total Samples Received
Component    , Total # of samples, Min sampling interval (msec), Max sampling interval (msec), Avg sampling interval
(msec)
---------    , ------------------, ----------------------------, ----------------------------, ----------------------------
CPU/Package_0, 3                 , 5.01                        , 26.25                       , 15.63
CPU/Package_1, 2                 , 31.21                       , 31.21                       , 31.21

==========
DRAM Power
==========
DRAM Power Summary: Average Rate and Total
Component  , Metric Type, Average Rate (mW), Total (mJ)
---------  , -----------, -----------------, ----------
DRAM/DRAM_0, Power      , 6175.33          , 214.05
DRAM/DRAM_1, Power      , 4477.13          , 155.21

DRAM Power Summary: Total Samples Received
Component  , Total # of samples, Min sampling interval (msec), Max sampling interval (msec), Avg sampling interval
(msec)
---------  , ------------------, ----------------------------, ----------------------------, ----------------------------
DRAM/DRAM_0, 3                 , 5.02                        , 26.19                       , 15.60
DRAM/DRAM_1, 2                 , 31.21                       , 31.21                       , 31.21

Figure 6: SoCWatch output
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Observations

In Figure 1, measurements of power, energy and the sampling time can be found for two DRAM

and the CPU packages that are present in the test machine. It can be observed that the tool could

only gather a limited number of samples in the runtime. Thus, programs with larger runtimes can

provide better results with more samples. The above output is used by the automation script and

is transferred to a CSV file

5.2 Cumulative layer-wise measurement

Initially, a cumulative method was used to measure the energy consumption. Each layer in the

network requires different input vector dimensions. During the inference of the model, the output

feature map serves as the input feature map of the following layer. Thus, the dimensions are

transformed automatically without any external interference. To avoid manual intervention, we

use a cumulative method, where we run inference for the layer in consideration along with all the

layers that precede it. Individual values are calculated differentially from the cumulative values.

The method is outlined in Figure 2.

Figure 7: Cumulative measurement method

We consider the cumulative energy consumption in each step, wherein the measured energy

consists of the energy consumption of all the previous layers. After the data is collected until the
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last layer, the individual energy for a particular layer is calculated by subtracting the energy

measured until the previous step. We also measure the energy consumption with no layers. This

energy consists of the energy consumed in loading libraries and other initialization tasks.

Results

Table 2: Cumulative energy measurement results

Layer

CPU/Pa

ckage_0

_energy

(mJ)

Individual

energy

CPU 0

(mJ)

CPU/Pack

age_1_ene

rgy (mJ)

Individual

energy

CPU 1

(mJ)

DRAM/D

RAM_0_e

nergy (mJ)

Individual

energy

DRAM 0

(mJ)

DRAM/D

RAM_1_e

nergy (mJ)

Individual

energy

DRAM 1

(mJ)

Baseline 62243 62243 74172 74172 12438 12438 29183 29183

conv1 445943 383700 464263 390092 106920 94481 109165 79983

relu1 455658 9714 478348 14085 110768 3849 118212 9047

pool1 503784 48127 520891 42543 119252 8483 126411 8198

conv2 2584795 2081011 2702210 2181319 862027 742775 849309 722899

relu2 2473235 -111560 2845949 143740 865357 3331 900646 51337

Reshape 2681068 207833 2656503 -189447 866185 828 831582 -69064

pool2 2766228 85160 2578476 -78027 869182 2996 878148 46567

linear1 4449406 1683178 4464221 1885744 1457614 588433 1465472 587324

relu3 4630003 180597 4165568 -298652 1486105 28490 1439632 -25840

linear2 4464019 -165984 4278065 112497 1421035 -65070 1362576 -77056

relu4 4655295 191276 4223219 -54846 1495066 74031 1326617 -35959

linear3 4357337 -297958 4461393 238174 1420736 -74330 1433304 106687
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Observations

In Table 1, the energies consumed in two packages of CPU and DRAM are obtained. The

packages are structured as shown in Figure 3.

Figure 8: CPU and DRAM Package structure

It can be observed that convolutional layers (conv1 and conv2) and fully connected layers

(linear1, linear2 and linear3) consume significantly higher energies as compared to other layers.

This is to be expected, given the higher number of memory accesses and computations involved.

Erroneous negative values are obtained in some cases (highlighted in red). This is due to the

variations in CPU states in between iterations, resulting in different total energies for the same

layer. To overcome this disadvantage of the cumulative method, the energy consumption of each

layer is measured individually after reshaping the input feature map.

5.3 Individual layer-wise measurement

Now, each layer is considered individually. In order to establish the correlation between input

feature size i.e number of pixels and the energy consumed, the dimensions of the input image are

increased progressively. The relation between number of pixels and the energy consumption can

be inferred from the results.
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Results

The results for the first convolutional layer (conv1) with input dimension changing from 32x32

to 1024x1024 are given in Table . The number of pixels in the image is obtained by squaring the

image dimension.

Table 3: Individual layer-wise measurement results for conv1 layer
Dime

nsion

s

Number

of pixels

CPU/Package

_0_energy

(mJ)

CPU/Package

_1_energy

(mJ)

DRAM/DRA

M_0_energy

(mJ)

DRAM/DRA

M_1_energy

(mJ)

Total Energy

for 10k

images (mJ)

Total Energy

per image

(mJ)

32 1024 430591.86 438895.51 107377.99 108857.91 1085723.27 108.57

64 4096 555363.89 577328.19 155497.25 148678.28 1436867.61 143.69

128 16384 926784.91 969018.01 230732.85 208853.21 2335388.98 233.54

256 65536 2182878.48 2247193.97 506746.77 512962.4 5449781.62 544.98

512 262144 7093129.7 7273590.64 1555559.57 1454149.72 17376429.63 1737.64

1024 1048576 23534665.53 25282982.12 5501520.94 6476860.11 60796028.7 6079.60

Figure 9: Total Energy per image (mJ) vs. Number of pixels for conv1
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Similarly, the experiment is conducted for the first fully connected layer (linear1). Here, one

dimension of the input needs to be fixed as per the shape of the layer. In this case, it needs to stay

constant at 400. Hence, the number of pixels is obtained by multiplying the image dimension by

400.

Table 3: Individual layer-wise measurement results for linear1 layer

Dimensio

ns

Input

Dimension

x Output

Dimension

CPU/Packag

e_0_energy

(mJ)

CPU/Packag

e_1_energy

(mJ)

DRAM/DR

AM_0_ener

gy (mJ)

DRAM/DR

AM_1_ene

rgy (mJ)

Total Energy

for 10k

images (mJ)

Total Energy

per image

(mJ)

32 12800 657564.82 669120.97 153171.75 127012.21 1606869.75 160.69

64 25600 1010002.75 1037902.4 227673.1 235621.03 2511199.28 251.12

128 51200 1590620.48 1647943.18 360693.54 312618.53 3911875.73 391.19

256 102400 2877407.1 2978843.32 617746.09 606696.23 7080692.74 708.07

512 204800 4912320.19 5035338.56 1035990.23 1051827.45 12035476.43 1203.55

1024 409600 9715623.9 10075784.85 2055656.31 1960552.73 23807617.79 2380.76

Figure 10: Total Energy per image (mJ) vs. (Input Dimension x Output Dimension) for
linear1
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To inspect the correlation, linear regression is used to fit a linear model over the resulting energy

data for each layer. This gives us the slope, intercept and the coefficient of determination ( )𝑅 2

for the resulting model.

Table 4: Individual layer-wise measurement results for linear1 layer
Layer Intercept (mJ) Slope (mJ/pixel) Score

conv1 152.17 5.68E-03 0.9995

conv2 94.18 8.13E-03 0.9980

linear1 105.47 5.53E-03 0.9992

linear2 98.57 5.30E-03 0.9997

Observations

From Figure 9 and Figure 10, we can observe the linear dependency between the number of

pixels and the energy consumed. This suggests that after offsetting the energy consumed outside

of the model inference, the energy consumed per pixel is constant. This constant can be inferred

from the value of slope for the corresponding layer given in Table 4. The energy offset, which

consists of energy consumed in loading libraries, model initialisation, etc. can be inferred from

the intercept value for the respective layer. The coefficient of determination is observed to be

high, indicating strong linear correlation between the two variables.
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6. Experimental Conclusions

From the conducted experiments, a linear dependency can be observed between the energy

consumed and the number of input pixels. Using this, we can define a measure for per-pixel

energy consumption of a particular layer in the neural network, and finally for the entire network.

To benchmark different hardware architectures for energy consumption, per-pixel energy

consumption can be measured for a particular convolutional neural network. With the linear

dependency established between the energy consumed and the pixels, the described methodology

can be used to develop a tool that can measure energy consumption of individual layers. Also,

the linear graph produces an intercept with the Y-axis, which can be used to calculate the energy

consumed by the application process when the energy consumed by the neural network is

excluded.
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7. DeepMeter - A layerwise energy measurement tool for DNNs

DeepMeter is a software tool developed as part of the project, which uses the methodology

developed in the aforementioned experiments. It allows the user to inspect the energy

consumption of a particular layer in a given neural network. It is built as a Python wrapper

around the Intel SoCWatch energy measurement tool to serve the purpose of layerwise

measurement.

7.1 Objectives and design requirements
The tool is built with the prospect of releasing it as a library and deploying it as a web service for

users to access through a website. This implies two basic requirements on the tool-

1. Availability of a single executable file, which can be run as a process in the deployment

server.

2. Easy-to-use input and output data structures that can be easily integrated into web

interfaces

Hence, the input to the tool is accepted through a easy-to-use method. The Javascript Object

Notation (JSON) format was chosen for this purpose. The user can provide the a JSON file

which contains the configuration of the neural network architecture. DeepMeter gives the output

in a Comma Separated Values (CSV) file, which contains the information about the energy and

power consumption of the selected layer in a tabular format. The CSV file format was chosen

due to its easy portability to spreadsheets.

Since the tool is also intended to be a library, the software must be developed keeping in mind

the prospective development of an Application Programming Interface (API). Using the

DeepMeter API, developers can access the energy consumption data. Hence, it is developed as

an installable Python package, that can be imported into the files of the user program. This

entails exposing the relevant classes and functions to the user. This is, again, enabled by the

modular structure of the codebase.
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7.2 Programming philosophy and structure

Keeping in mind maintainability and clarity of the code, the codebase was developed in a

modular structure. The code operates on the principle of “separation of concern”, which states

that independent functions should exist separately, ideally in separate modules (folders in the

case of Python). Figure 10 shows the structure of the codebase in a tree format-
.

├── base

│   ├── __init__.py

│   ├── layer.py

│   └── sandbox.py

├── controller

│   ├── __init__.py

│   └── run.py

├── data

│   └── MNIST

│       └── raw

│           ├── t10k-images-idx3-ubyte

│           ├── t10k-images-idx3-ubyte.gz

│           ├── t10k-labels-idx1-ubyte

│           ├── t10k-labels-idx1-ubyte.gz

│           ├── train-images-idx3-ubyte

│           ├── train-images-idx3-ubyte.gz

│           ├── train-labels-idx1-ubyte

│           └── train-labels-idx1-ubyte.gz

├── __init__.py

├── processors

│   ├── __init__.py

│   ├── input_parser.py

│   ├── output_processor.py

├── README.md

├── script.py

├── setup.py

└── test.json

Figure 10: Codebase structure
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The codebase is divided into separate module- base, controller and processors. These have been

divided according to their functional differences. The base module contains the classes and

functions that are used throughout the library, which make up the core functionality of the tool.

The controller module contains the code required to run the simulation of the different layers of

the model within the tool. The processors module handles parsing the input and extracting the

required data from SoCWatch and formatting the final output in the CSV format. The modular

structure simplifies debugging and helps in easy maintenance of the codebase. It also ensures

that features can be added in the future without changing the existing code significantly. The

modular structure also allows different contributors to the tool can access and modify the code at

the same time without interfering with someone else’s changes.

The entrypoint to the tool is a single Python script- “script.py”, which accepts the path to the

JSON file that describes the model and the selected layer as command line arguments. If the user

if using the tool through the command line, this file can be run by passing the file to the Python

runtime.

Currently, the tool has inherited the modified code of the experiments conducted to establish the

energy measurement methodology. Hence, the data folder contains the MNIST dataset, which

was previously used for testing with the Lenet-5 model. MNIST is a low-complexity data

collection of handwritten digits used to train and test various supervised machine learning

algorithms. The database contains 70,000 28x28 black and white images representing the digits

zero through nine. The data is split into two subsets, with 60,000 images belonging to the

training set and 10,000 images belonging to the testing set. DeepMeter currently operates on the

MNIST dataset, since the usage is predominantly restricted to Convolutional Neural Networks

(CNNs). Option to select a particular dataset can be added in future versions of the tool. At

installation, the dataset is not present in the folder. This is due to the large size of the dataset

making the tool heavy during installation. At the first run of the tool, the MNIST dataset is

downloaded from the internet. Thus, the results obtained from the first run of the tool may be

unreliable.
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7.3 Dependencies

1. PyTorch

PyTorch is an open source machine learning framework based on the Torch library, used for

applications such as computer vision and natural language processing, primarily developed by

Facebook's AI Research lab (FAIR). It is free and open-source software released under the

Modified BSD license. This project uses the PyTorch Python library for the purpose of building

the deep neural network provided by the user.

PyTorch provides the neural network module (nn), which make functions for different layers

available. These include convolutional layers, fully-connected layers, pooling layers, etc. While

the layers are provided by PyTorch, DeepMeter implements a single wrapper for different layers.

This is a unified layer of abstraction that is built for customised layer selection.

The masic model structure can be seen in Figure 5. A model is a class that inherits the

“nn.module” class from PyTorch. It inherits the different functions that are required in the

functioning of a DNN, for example- forward pass and backpropogation of the model. The layers

are defined in the initialising functions by declaring a series of class attributes obtained by

calling the respective PyTorch library functions. The “forward” functions defines the series of

steps that are involves in the forward pass of the model. When the model is called, the “forward”

function runs and returns the result.

2. Intel SoCWatch

Intel SoCWatch is a data collector for power-related data from the system. It is intended to

identify usage issues that may lead to excessive power consumption. Besides energy metrics, the

metrics collected include-

● System sleep states

● CPU and GPU sleep states

● Processor frequencies

● Temperature data

● Device sleep states
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DeepMeter requires Intel SoCWatch to be installed on the system. Installation instructions can be

found on Intel’s website2. It also requires the user to compile the required kernel modules and

enable certain kernel permissions so that the tool can access the CPU registers that are normally

not accessible in user space.

7.4 Modules

The codebase is divided into separate module- base, controller and processors. These have been

divided according to their functional differences. The base module contains the classes and

functions that are used throughout the library, which make up the core functionality of the tool.

The controller module contains the code required to run the simulation of the different layers of

the model within the tool. The processors module handles parsing the input and extracting the

required data from SoCWatch and formatting the final output in the CSV format.

1. Base

The “layer.py” contains the “Layer” class. This is an abstraction over the layer modules in

PyTorch.

class Layer:

def __init__(self, kwargs) -> None:

self.params = kwargs

self.type_ = kwargs.get("type")

if not self.type_:

raise Exception("'type' key missing. Please specify type of action")

if self.type_ == "layer":

torch_module = kwargs.get("torch_module")

if torch_module:

self.layer_module_name = torch_module.split(".")[-1]

else:

raise Exception("Required parameter: torch_module")

self.activation_functions = ["relu", "tanh", "selu", "leakyrelu"]

self.layer_module = getattr(nn, self.layer_module_name)

self.layer_object = self.__get_layer()

self.reshape_dim = kwargs.get("reshape_dim")

2 Intel® SoC Watch

27

https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-sbu-windows/top/intel-soc-watch-and-intel-vtune-profiler.html


elif self.type_ == "reshape":

self.layer_object = self.__buffer()

self.reshape_dim = kwargs.get("reshape_dim")

def __buffer(x):

return x

def __get_layer(self):

try:

if self.layer_module_name.lower() in self.activation_functions:

return self.layer_module()

elif "linear" in self.layer_module_name.lower():

return self.layer_module(in_features=self.params['in_features'], out_features=self.params['out_features'])

elif "pool" in self.layer_module_name.lower():

return self.layer_module(kernel_size=self.params['kernel_size'], stride=self.params['stride'])

elif "conv" in self.layer_module_name.lower():

return self.layer_module(

in_channels=self.params['in_channels'],

out_channels=self.params['out_channels'],

kernel_size=self.params['kernel_size'],

stride=self.params['stride'],

padding=self.params['padding']

)

except KeyError as e:

raise Exception(f"Missing parameter: {e.args[0]}")

except:

raise

def __str__(self) -> str:

return str(self.layer_object)

Figure 11: Layer class

The Layer class selects the required PyTorch module from the input module, which is in the form

of a string. It is a necessary abstraction over the PyTorch modules since the modules need to be

loaded fron the text input given by the user and eventually, they need to be run in the sandbox

model, whose run shall be monitored by SoCWatch.
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class SandboxModel(nn.Module):

def __init__(self, layers:List[Layer], layerwise=False) -> None:

super().__init__()

self.layers = layers

self.layerwise = layerwise

if self.layers:

self.active_layer = None

self.__layer_iter = iter(self.layers)

else:

raise Exception("Layers not provided!")

def __iter__(self):

self.active_layer = self.layers[0]

return self

def __next__(self):

curr = self.active_layer

if not curr:

raise StopIteration

self.active_layer = next(self.__layer_iter)

return curr

def __call(self, x, func, reshape_dim=None):

if reshape_dim:

x = resize(x, [reshape_dim[2], reshape_dim[3]])

x = x.expand(reshape_dim)

x = func(x)

return x

def set_active_layer(self, layer_index):

self.active_layer = self.layers[layer_index]

def forward(self, x):

x_ = x

if not self.layerwise:

for layer in self.layers:

x_ = self.__call(x_, layer.layer_object, layer.reshape_dim)

else:

x_ = self.__call(x_, self.active_layer.layer_object, self.active_layer.reshape_dim)

Figure 12: SandBoxModel class
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The SandboxModel class encapsulates the functionality of a model created from PyTorch layers,

while allowing for changing the layers dynamically. Thus, the model can be constructed as per

the requirement of the user. It has the option of running multiple layers together at a time or one

layer at a time. This option can be selected by the calling function. Through the “__iter__”

function the class can be converted into an iterator. SandboxModel uses a custom function,

“__call” to call the layers, where it resizes the input vector as per the layer. The resize dimension

is provided by the user in the input. Thus, SandboxModel acts as a bridge between the PyTorch

nn module and the functionality of DeepMeter.

2. Controller

DeepMeter applies the principle of metaprogramming, where it writes a program within itself to

simulate the running of the deep neural network. The “run.py” file in the controller module

contains the template code to construct such a process. It brings together all the internal

components of DeepMeter. The “run.py” file also provides options for the input file path, the

batch size and the selected layer for which energy has to be measured. The “script.py” file, which

is the entrypoint calls the “run.py” file with the options given by the user.

3. Processor

The processor module contains the code required for text processing in input and output

functions of DeepMeter.

The “input_parser.py” file contains the InputInterface class, which is processes the text input file

given by the user in JSON format. A sample input to DeepMeter is given in Figure 13

[

{

"type": "layer",

"torch_module": "nn.Conv2d",

"in_channels": 1,

"out_channels": 6,

"kernel_size": [2, 2],

"stride": [1, 1],

"padding": [0, 0]

},
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{

"type": "layer",

"torch_module": "nn.ReLU"

},

{

"type": "layer",

"torch_module": "nn.MaxPool2d",

"kernel_size": [2, 2],

"stride": [2, 2]

},

{

"type": "layer",

"torch_module": "nn.Conv2d",

"in_channels": 6,

"out_channels": 16,

"kernel_size": [5, 5],

"stride": [1, 1],

"padding": [0, 0]

},

{

"type": "layer",

"torch_module": "nn.ReLU"

},

{

"type": "layer",

"torch_module": "nn.MaxPool2d",

"kernel_size": [2, 2],

"stride": [2, 2]

}

]

Figure 13: Sample input to DeepMeter

The input is in hte format of a list of objects, each of which contains the required specifications

to construct a layer in PyTorch. These parameters differ according to the layer chosen. The user

can also enter objects with type “resize”, which instructs DeepMeter to resize the feature map

before moving on to the next step. This step is often required since the feature map dimensions

taken from the dataset might not match the dimensions required by the layer at its input. A

31



“Layer” object is constructed from each object in the JSON list. These “Layer” objects are

collected in a list and passed further to the “run.py” file.

The “output_processor.py” file contains the code required to format the output from SoCWatch

into a proper format. It takes the text output from the standard output (STDOUT) of the process

running SoCWatch and parses it to get the required values. Then, the extracted values are written

to a CSV file. A sample output is given in Figure 14.

CPU/Package_0_power,CPU/Package_0_energy,CPU/Package_1_power,CPU/Package_1_energy,DRAM/DRAM_0_po

wer,DRAM/DRAM_0_energy,DRAM/DRAM_1_power,DRAM/DRAM_1_energy

30131.32,23626.1,33905.2,26585.45,8636.69,6772.16,10831.17,8492.92

Figure 14: Sample output from DeepMeter

The first line in the output is the header line, which is followed by the values of the energy and

power measured by the tool for the selected layer in each CPU and DRAM package.
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8. Future scope
DeepMeter is highly dependent on the Intel SoCWatch tool. Since Intel SoCWatch tool itself is in

its nascent stage, further improvements and feature additions can be made based on how Intel

releases further versions of SoCWatch. Documentation for the functionalities of SoCWatch scant

at this point of time. Due to limited use, user answers on internet forums like StackOverflow

related to bugs and features in SoCWatch are nearly non-existent. This makes development of

DeepMeter difficult, since SoCWatch essentially becomes a black box. As usage of the tool picks

up, bugs are fixed and new features are added, the development of DeepMeter will become

relatively smooth.

The development of DeepMeter in this project has been foundational and has focused on

building its functional core. Further development can be done on top of the existing code-

1. Option to select multiple layers for measurement

2. Option to select specific metrics to extract

3. Development of a web-based service that can take user input in the form of a UI or a

JSON file and can output the energy measurement metrics for a selected hardware

architecture and neural network

4. Feature to generate graphs and analysis reports from the collected data

5. Selection of datasets

6. Collection of common models that the user can select directly without needing to provide

a configuration file
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